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Velocity distribution of water molecules in pores under
microwave electric field
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Abstract —In order to understand the transport of water in pores under the influence of a microwave electric field the velocity
distribution function of the water molecules is thought to be a key quantity. First, bulk water under the influence of an alternating
electric field is studied by using a kinetic equation. As rotation occurs on a faster time scale and translation on a slower time scale it
is argued that the velocity distribution for the bulk water is a Maxwell–Boltzmann distribution. Next, the non-equilibrium molecular
dynamics simulation method is applied to study the behaviour of TIP3P water molecules under microwave electric field in a slit pore
with thermostated walls. The water heats up till it reaches a steady state temperature. It is found that in the transient process as
well as in the steady state the velocity distribution function is a Maxwell–Boltzmann distribution for the corresponding temperature.
Hence, there is no convective mass transport due to a direct influence of the electric field.  2001 Éditions scientifiques et médicales
Elsevier SAS
microwave heating / velocity distribution / kinetic equation / confined water / slit pore / non-equilibrium molecular
dynamics

Nomenclature

a lattice constant of the wall square lattice . . . m
b O–H bond length . . . . . . . . . . . . . . . . m
di dipole moment of theith water molecule . . . C·m
E electric field . . . . . . . . . . . . . . . . . . V·m−1

E0 electric field strength . . . . . . . . . . . . . . V·m−1

e elementary electric charge . . . . . . . . . . . C
F returning force acting on a wall particle . . . N
f velocity distribution function
f1 one-particle distribution function
fN N -particle distribution function
H Hamilton function of a system in the

external electric field . . . . . . . . . . . . . . J
H0 Hamilton function of a system without

external electric field . . . . . . . . . . . . . . J
Ii moments of inertia of a water molecule . . . kg·m2

Kw total kinetic energy of wall particles . . . . . J
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k elasticity coefficient . . . . . . . . . . . . . N·m−1

kB Boltzmann constant . . . . . . . . . . . . . J·K−1

Li angular momentum of theith molecule . . kg·m2·s−1

L size of simulation box inx andy directions m
M number of degrees of freedom in water

molecule
m mass of a water molecule . . . . . . . . . . kg
mw mass of a wall particle . . . . . . . . . . . . kg
N number of water molecules
Nw number of wall particles

pi momentum of theith molecule . . . . . . . kg·m·s−1

pij generalised momenta
q+ electric charge of H-site in TIP3P model . C
q− electric charge of O-site in TIP3P model . C
qij generalised coordinates
ri coordinate of theith molecule . . . . . . . m
T temperature . . . . . . . . . . . . . . . . . K
T0 initial temperature of the system . . . . . . K
Tw effective temperature of the wall . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . s
U12-6 12-6 Lennard–Jones potential . . . . . . . . J
U9-3 9-3 Lennard–Jones potential . . . . . . . . J
u potential energy of intermolecular

interactions . . . . . . . . . . . . . . . . . . J
v velocity of a water molecule . . . . . . . . m·s−1

717



S.V. Lishchuk, J. Fischer

z0 z-coordinate of the pore wall . . . m
α cosine of the angle betweend1 and

L1
Γ ′ generalised coordinates and

momenta of(N − 1) molecules . (kg·m2·s−1)M·(N−1)

δ displacement of a wall particle from
its equilibrium position . . . . . . m

ε Lennard–Jones energy parameter J·mol−1

θ H–O–H bond angle
ν frequency of microwave field . . . Hz
σ Lennard–Jones size parameter . . m
τ i orientation of theith molecule
rrot characteristic time of rotational

motion . . . . . . . . . . . . . . . s
Ttr characteristic time of translational

motion . . . . . . . . . . . . . . . s

1. INTRODUCTION

The use of microwaves for heating of water is widely
used in food processing [1]. After sufficient heating the
water evaporates and gives rise to microwave drying
which besides in food processing is also used for the
drying of wood. In spite of the wide use of microwave
heating and drying, the heat and mass transport processes
of water in porous media under the influence of an elec-
tric field are not yet completely understood. In a recent
model on microwave drying [2], e.g., heat transport is
only accounted for by heat conduction and mass trans-
port inside the pores is not contained at all in the model.
Here we concentrate on the mass transport which may be
caused by three different mechanisms: diffusion, convec-
tion due to the formation and growth of vapour bubbles
and convection due to a direct influence of the electric
field. The latter mechanism means that the electric field
causes a deviation of the velocity distribution function
from the Maxwell–Boltzmann form which in turn gives
rise to convective flow.

A clarification of these mechanisms may be achieved
on a molecular scale either by kinetic theory or by mole-
cular dynamics simulations. In the framework of mole-
cular dynamics simulations the treatment of diffusion is
the most simple among the transport mechanisms from
the methodological point of view [3]. The calculation
of the velocity distribution function is more complicated
and the most complicated problem is the formation and
growth of the vapour bubbles. Here we concentrate on
the question whether the velocity distribution function
of liquid water shows deviations from the Maxwell–
Boltzmann distribution under the influence of the mi-
crowave field.

To our knowledge a study on the velocity distribution
of densely packed water molecules under the influence of
an alternating electric field has not yet been performed.
Here, we study first bulk water under the influence of an
alternating electric field by using a kinetic equation. In
the second part of this paper, the behaviour of water con-
fined to a slit pore under the influence of an alternating
electric field will be studied by the method of molecular
dynamics.

2. NON-CONFINED WATER

The aim of this section is to find the distribution
of translational velocities for water molecules under
microwave electric field.

The molecular model for the water molecules will be
explained in the Section 3.1 in detail. For this section it
is sufficient to state that we assume the water molecules
to be rigid molecules with three partial electric charges
that roughly correspond to the oxygen and the two
hydrogen atoms. Hence, these molecules have three
translational and three rotational degrees of freedom. For
the interaction with the external electric field the water
molecules may be treated as dipoles.

Let us describe a system ofN water molecules classi-
cally by the generalised coordinates{qij } and momenta
{pij }, where the first indexi = 1, . . . ,N specifies the
molecule, and the second indexj = 1, . . . ,M specifies
the degree of freedom within a molecule. Its behaviour
can be described by theN -particle distribution function

fN = fN
({qij }, {pij }, t

)
.

M denotes the number of degrees of freedom per water
molecule. It includes translational and rotational degrees
of freedom. We neglect the vibrational motion of the
atoms within the molecule, hence we chooseM = 6.

The equation of motion can be written using the
Hamilton formalism:

dfN
dt

= ∂fN

∂t
+

N∑
i=1

M∑
j=1

(
∂fN

∂qij
· ∂H

∂pij

− ∂fN

∂pij

· ∂H

∂qij

)
= 0

(1)
In the absence of the external field the Hamilton function
H0 of the system is the sum of the kinetic energy of par-
ticles (corresponding to the translational and rotational
motion) and the potential energyu(ri , . . . , rN,τ1, . . . ,
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τN) of intermolecular interactions:

H0 =
N∑
i=1

(
p2
i

2m
+

3∑
j=1

L2
i

2Ii

)
+ u(ri , . . . , rN,τ1, . . . ,τN)

(2)
where thepi are the linear momenta and theLi are the
angular momenta. The unit vectorsτ i are introduced to
indicate the orientation of the corresponding molecule.

One can build the one-particle distribution function
f1, depending only on three translational coordinates
x, y, z of one molecule, forming vectorr1, correspond-
ing momentapx,py,pz, forming vectorp1, and three
componentsτ1, τ2, τ3 of the orientation vectorτ1 of one
molecule, and three components of the angular momen-
tum vectorL1, corresponding to the rotation of one mole-
cule, by integration of theN -particle distribution func-
tion over other generalised coordinates and momenta:

f1(r1,p1,τ1,L1, t) = N

∫
· · ·
∫

fN
({qij }, {pij }, t

)
dΓ ′

(3)
where integration over dΓ ′ denotes integration over
generalised coordinates and momenta other than
dr1 dp1 dτ1 dL1.

Multiplying (1) by N and performing integration over
dΓ ′, we obtain a coupling between one- and two-particle
distribution functions

∂f1

∂t
+ p1

m

∂f1

∂r1
+ (Li)1

Ii

∂f1

∂τ1

= ∂

∂p1

∫
∂u(ri , . . . , rN,τ1, . . . ,τN)

∂r1

× f2(r1, r2,p1,p2,τ1,τ2,L1,L2)

× dr2 dp2 dτ1 dL2

+ ∂

∂L1

∫
∂u(ri , . . . , rN,τ1, . . . ,τN)

∂τ1

× f2(r1, r2,p1,p2,τ1,τ2,L1,L2)

× dr2 dp2 dτ1 dL2 (4)

The rotational motion happens on a time scale which
is one order of magnitude faster than the translational mo-
tion. The values of the characteristic times for the trans-
lational and rotational motions for the model described
in Section 3.1 areτtr ∼ 10−12 s, τrot ∼ 10−13 s, corre-
spondingly. In the view of this fact it is worth to decouple
equation (4) into these two time scales. On the slow time
scale equation (4) reduces to

∂f1

∂t
+ p1

m

∂f1

∂r1

= ∂

∂p1

∫
∂u(ri , . . . , rN,τ1, . . . ,τN)

∂r1

× f2(r1, r2,p1,p2,τ1,τ2,L1,L2)

× dr2 dp2 dτ1 dL2 (5)

This is the first equation of the Bogoliubov, Born,
Green, Kirkwood, Yvon (BBGKY) hierarchy (compare,
for example, [4]). Its equilibrium(∂f1/∂t = 0) solution
must give the Maxwell–Boltzmann distribution for the
translational velocities:

f (v) = 4π

(
m

2πkBT

)3/2

v2 exp
(−mv2/2kBT

)
(6)

Next, let us apply the external electric field to our
system. In this case the Hamilton functionH gets an
additional contribution

H = H0 +
N∑
i=1

diE (7)

wheredi is the dipole moment of theith water molecule,
E is the external electric field. As a result, the additional
term appears in the left side of the transport equation:

L̇ · ∂f1

∂L1
= d1 × E · ∂f1

∂L1
(8)

As a result of averaging with respect to the rapid preces-
sion of the top’s axis about the direction of the constant
vectorL1, there remains in the above term only the com-
ponentd1 alongL1, and it becomes [5](

d1 · cosα

M1

)
L1 × E · ∂f1

∂L1
(9)

whereα is the cosine of the angle betweend1 andL1.

The system under consideration (bulk water under ex-
ternal electric field) has the axial symmetry with respect
to the direction ofE. Since the magnetic contribution of
the microwave field into the force acting on a water mole-
cule is negligibly small compared to the electric contribu-
tion, in average there is no preferred direction of rotation
of a water molecule with respect to the axis parallel toE.
Therefore, vectorsE, L1 and ∂f1/∂L1 lay in the same
plane, and their productL1 × E · (∂f1/∂L1) (and thus the
contribution (9)) is equal to zero. The right-hand side of
the transport equation acquires an additional term

∂

∂L1

∫
∂(d1E)

∂τ1

× f2(r1, r2,p1,p2,τ1,τ2,L1,L2)

× dr2 dp2 dL2 (10)
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which vanishes after integration because the orientation
of a water molecule changes rapidly as it rotates. So,
we have returned to the equation (5), resulting in the
Maxwell–Boltzmann velocity distribution (6).

3. CONFINED WATER

The properties of water near the interface are different
from those of bulk water [6]. If water is confined within
a micropore, the axial symmetry of the system breaks,
and the argument of Section 2, leading to the elimination
of the contribution (9), is not valid any more. In this case
the kinetic equation must be solved explicitly. However,
it is rather difficult to solve the kinetic equation even for
the confined system of particles interacting via hard-core
repulsive and soft attractive potential [7, 8].

In this situation using the computer simulation for
a model system can help to find its microscopic and
macroscopic properties [9]. This section describes the
results for the velocity distribution of water molecules
within a pore obtained with help of the non-equilibrium
molecular dynamics simulation.

3.1. Model

The model consisting ofN = 1944 water molecules
confined within a slit pore was used in the present
study. The water–water interaction was modelled by the
TIP3P potential [10] (seefigure 1). Briefly, this model
consists of three sites, that roughly correspond to oxygen
and two hydrogen atoms carrying electric chargesq− =

Figure 1. The TIP3P water molecule [10]. The values of the
parameters are given in the text.

−0.834e and q+ = 0.417e (e is the elementary charge
unit |e| = 1.6·10−19 C), correspondingly. Additionally,
a single Lennard–Jones interaction centre is positioned
at the oxygen site. For the TIP3P model the parameters
of the 12-6 Lennard–Jones interaction energy

U12-6(r) = 4ε

((
σ

r

)12

−
(
σ

r

)6)
(11)

are the interatomic distanceσ = 0.315 nm at which
the potential is equal to zero, and the energy well
depthε = 636.7 J·mol−1. The fixed O–H bond length
is b = 0.09572 nm, the fixed H–O–H bond angle is
θ = 104.52◦.

Two perfect surfaces parallel to theX–Y plane were
placed atz = 0 and z = z0 = 1.69 nm in both sides
of the simulation box. The interaction between a water
molecule and a surface is described by the 9-3 Lennard–
Jones potential [11]

U9-3(r) = 0.0174475r−9 − 76.1496r−3 (12)

where the units are nm forr and J·mol−1 for U9-3. In
equation (12)r is the distance of the water oxygen atom
from the surface. The “effective width” of a system with
walls at origins of 0 andz0 is defined to be the distance
between points at which potentialU is zero; these points
are at 0.25 nm andz0 − 0.25 nm. This potential is
intended to mimic the interaction of water with a solid
hydrocarbon surface [11–14].

An additional set of point particles at the pore walls
was introduced. The equilibrium positions of these par-
ticles form the square lattice with square lengtha =
0.343 nm at each wall. The particles are able to oscillate
near their equilibrium positions. The returning force act-
ing on a wall particle is proportional to its displacement
δ from the corresponding equilibrium position:

F = −kδ (13)

with k = 1.065·10−2 N·m−1. Additionally, these parti-
cles interact with water molecules with the 12-6 Lennard–
Jones potential (11) withσ = 0.315 nm and
ε = 636.7 J·mol−1. In the current simulation we used
Nw = 648 wall particles with massmw = 0.672m, where
m is the mass of the water molecule.

The alternating electric field

E = E0 cos2πνt (14)

where E0 is parallel to pore walls and lays in theX
direction, is applied to the system. This field results in
the additional forceqiE(t), acting on each chargeqi of
the TIP3P molecule.
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3.2. Simulation methodology

Electrostatic interactions of water molecules vary as
r−3
ij (dipole–dipole) at long distances, therefore in the

two-dimensional system such as a slit pore they do
not belong to the category of long-range interactions.
Therefore, it is possible to increase the size of the
simulation boxL in the dimensionsX andY , parallel
to the pore walls, so that the electrostatic interactions
between images become negligibly small. However, this
leads to the increasing of the required computation time,
which is proportional toL4. Alternatively, long-range
interactions can be handled using the methods, developed
for the charge–charge electrostatic interactions in the
two dimensional system (see [15, 16] and references
cited therein). This requires less computation time due
to lesserL, but the overall effectiveness of this methods
is questionable due to the big amount of calculations
involved.

We used the Lekner summation method [15] to simu-
late our system withL = 2.06 nm, and compared the con-
sumed time with that required for the simulation with no
special handling of electrostatic interactions and the size
of the simulation boxL = 6.17 nm which is sufficient
for the dipole–dipole interactions to become negligibly
small. We have found that in the latter case the required
time was lesser by an order of magnitude. Therefore, no
special handling of the electrostatic interactions was used
in the production run.

To get rid of the error in the numerical solution
of Newton’s equations due to use of a finite-difference
algorithm for solving differential equations, and round-
off errors that occur in the computer hardware, the
temperature rescaling is usually used [9]. However, this
method is not suitable in our case, since the temperature
of the system is essentially not constant.

The rescaling of the temperature in the fluid layer
closest to the wall used in [17] helped to avoid this
problem and to model the dissipation of the heat. In
the present simulation we modified this approach by
introducing an additional set of particles at the pore walls.
The temperature of the wall is introduced as

Tw = 2

3kB

Kw

Nw
(15)

whereKw is the total kinetic energy ofNw wall particles.
The temperature exchange between water and pore walls
is possible due to the Lennard–Jones interaction between
wall particles and centres of the TIP3P water molecules
which is weak in comparison with the electrostatic

interaction between water molecules (see Section 3.1).
The wall temperature is returned to the initial constant
value by rescaling it at the beginning of each period of
the electric field (14). Also, this method reflects the fact,
that most of the energy absorption during the microwave
heating is in water, and the energy acquired by water
dissipates in pore walls.

Periodic boundary conditions based on the molecular
centre of mass were used to eliminate surface effects in
thex andy directions. The Lennard–Jones potential for
the water–water and water–wall interaction was cut off
at 2.5σ .

Newton’s equations of motion were integrated using
the predictor-corrector method. Time steps were chosen
to be 1 fs.

The microwave field (14) was applied to the system
after 50 ps of equilibration. The frequencyν = 245 GHz
was chosen to be 100 times greater than the standard
microwave frequency 2.45 GHz to save the simulation
time. The value ofE0 was chosen to be equal tokBT0/d0,
whered0 is the dipole moment of the TIP3P molecule,
T0 = 300 K is the initial temperature of the system. The
thermal and electrostatic energies were chosen to be of
the same order of magnitude to make the possible effect
of the deviation of the velocity distribution from the
Maxwell–Boltzmann one more noticeable.

The temperature of the system during the production
run grew until the steady state was reached att ≈ 150 ps,
as it is shown atfigure 2. The configurations, orientations
and velocities of the water molecules and surface parti-
cles were stored every ten time steps (0.01 ps) for the
later analysis.

Figure 2. Time dependence of water temperature (equilibration
omitted).
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3.3. Simulation results

The data on the velocities of the water molecules was
used to restore the distribution of the translational veloc-
ities of water molecules within a pore under microwave
field. To minimise the noise, each distribution was aver-
aged over the corresponding period of the external elec-
tromagnetic field. The results obtained at different times
are described by the Maxwell–Boltzmann distribution (6)
with good accuracy before the steady state is reached and
in the steady state as well (seefigure 3).

The distribution of the componentsvx , vy and vz
of the translational velocity does not change under mi-
crowave field as well, and is well described by the equa-

Figure 3. The distribution of the translational velocities of
water molecules at t = 40ps (circles) and t = 200ps (triangles).
Solid lines correspond to the Maxwell–Boltzmann distribution
(6) for corresponding temperatures.

Figure 4. The distribution of the x-(circles), y-(triangles)
and z-components (rhombs) of the translational velocities of
water molecules at t = 200 ps. Solid line corresponds to
equation (16).

tion

f (vi) ∼ exp
(−mv2

i /2kBT
)

(16)

The distribution in the steady state is shown at the
figure 4.

4. CONCLUSION

The item at issue was to improve our understanding
of transport of water in pores under the influence of a
microwave electric field. The main finding of the paper
is that the velocity distribution function during the tran-
sient process as well as in the steady state is a Maxwell–
Boltzmann distribution. As far as the statistical uncertain-
ties of the molecular dynamics method are concerned,
they can be estimated from the scattering of the simu-
lation results around the mathematically exact Maxwell–
Boltzmann functions infigures 3 and4. This scattering is
random and small in comparison to deviations from the
Maxwell–Boltzmann distribution in the case of evapora-
tion [18]. Hence, if there would exist a deviation from
the Maxwell–Boltzmann distribution which could not be
resolved in the present study it can only be small and is
thought to be of negligible influence on the mass trans-
port. The final conclusion is that convective transport of
liquid water due to a direct influence of the electric field
can either be excluded or is negligibly small.

The transport processes which remain to be taken into
account and which have to be investigated are diffusion
and, presumably more important, convection due to the
formation and growth of vapour bubbles. The investi-
gation of this latter transport mechanism requires non-
equilibrium molecular dynamics simulations at constant
pressure which are methodologically more complicated
than the present simulations at constant volume.
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